CORRIGÉ DU CONTRÔLE D'OPTIQUE GÉOMÉTRIQUE

TS2A / 8 février 2005

A/ L'OBJET EST À L'INFINI

1. Le nombre d'ouverture N d'une lentille mince diaphragmée sur elle-même est égal au rapport de sa distance focale image à son diamètre d'ouverture.

Ici
$$N_1 = \frac{8}{2} = 4$$
 $N_2 = \frac{12}{3} = 4$

2. Les formules de Gullstrand donnent :

$$f' = \frac{f'_1 f'_2}{f'_1 + f'_2 - e} = \frac{8 \times 12}{8 + 12 - 4} = + 6 cm$$

$$\overline{L_1 H} = e \frac{f'}{f'_2} = 4 \frac{6}{12} = + 2 cm$$

$$\overline{L_1 F} = \overline{L_1 H} + \overline{H F} = \overline{L_1 H} - f' = 2 - 6 = - 4 cm$$

$$\overline{L_2 H'} = -e \frac{f'}{f'_1} = -4 \frac{6}{8} = - 3 cm$$

$$\overline{L_2 F'} = \overline{L_2 H'} + \overline{H' F'} = \overline{L_2 H'} + f' = -3 + 6 = + 3 cm$$

3.
$$\frac{1}{\overline{L_2L_1'}} = \frac{1}{\overline{L_2L_1}} + \frac{1}{f_2'} = \frac{1}{-4} + \frac{1}{12} = \frac{-3+1}{12} = -\frac{1}{6} \qquad \overline{L_2L_1'} = -6 \text{ cm}$$

$$g_y(L_1, L_1') = \frac{\overline{L_2L_1'}}{\overline{L_2L_1}} = \frac{-6}{-4} = +1,5$$

$$\emptyset L_1' = \emptyset L_1. g_y(L_1, L_1') = 2 \times 1, 5 = 3 \text{ cm}$$

4. La pupille de sortie de l'objectif est le diaphragme-image vu de F' sous l'angle le plus petit.

Les deux diaphragmes-images sont L'_1 et L_2 .

Ils sont vus sous des demi-angles β_1 et β_2 , tels que :

$$\tan \beta_1 = \frac{\varnothing L_1'}{2 \ L_1' F'} = \frac{\varnothing L_1'}{2 \ (L_1' L_2 + L_2 F')} = \frac{3}{2(6+3)} = \frac{1}{6} = 0, 1\overline{6}$$

$$\tan \beta_2 = \frac{\varnothing L_2}{2 \ L_2 F'} = \frac{3}{2 \times 3} = \frac{1}{2} = 0, 5$$

L'angle le plus petit est celui dont la tangente est la plus petite : c'est β_1 . L'₁ est donc pupille de sortie, et le diaphragme matériel qui lui correspond, à savoir L₁, est bien diaphragme d'ouverture.

5. Le nombre d'ouverture de l'objectif est égal au rapport de sa distance focale image au diamètre de sa pupille d'entrée.

Joseph Hormière OG

Or L_1 , diaphragme d'ouverture, appartient au milieu objet. Il est donc aussi pupille d'entrée.

$$N = \frac{f'}{\varnothing L_1} = \frac{6}{2} = 3$$

6. Le faisceau utile image associé au point sur l'axe F' s'appuie sur la pupille de sortie L'_1 .

Pour un point Φ' du plan image qui s'écarte de F', le faisceau utile est entamé par la lucarne de sortie L_2 à partir du point PL', limite du champ de pleine lumière image.

Quand Φ' est en M', limite du champs moyen image, la moitié du faisceau qui s'appuie sur la pupille de sortie est diaphragmée par la lucarne de sortie.

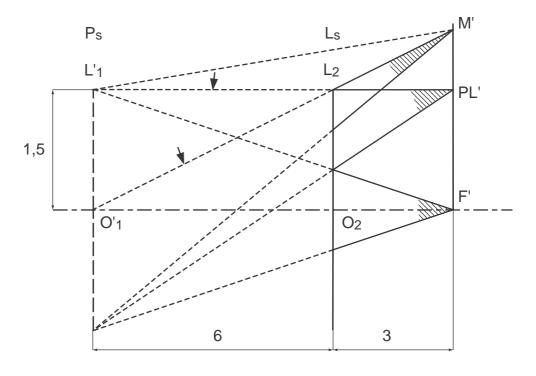


Figure 1

Les deux rayons qui permettent de calculer les champs images sont indiqués par des flèches.

Comme pupille et lucarne de sortie ont même diamètre 3 cm, le champ de pleine lumière image a un diamètre identique :

$$\emptyset PL' = 3 \ cm$$

La similitude des triangles $O'_1O_2L_2$ et $L_2PL'M'$ donne :

Joseph Hormière OG

$$\begin{split} \frac{PL'M'}{O_2L_2} &= \frac{O_2F'}{O_1'O_2} = \frac{3}{6} = \frac{1}{2} \qquad PL'M' = \frac{O_2L_2}{2} = \frac{1,5}{2} \\ \rightarrow \quad F'M' &= F'PL' + PL'M' = 1,5 + 0,75 = 2,25 \ cm \qquad \varnothing M' = 4,5 \ cm \end{split}$$

7. Le plan objet est à l'infini. Les champs objets sont définis angulairement.

$$\tan \omega_{PL} = \frac{R_{PL'}}{f'} = \frac{1,5}{6} \qquad \to \omega_{PL} = 14,0^{\circ} \to 2\omega_{PL} = 28,0^{\circ}$$

$$\tan \omega_{M} = \frac{R_{M'}}{f'} = \frac{2,25}{6} \qquad \to \omega_{M} = 20,5^{\circ} \to 2\omega_{M} = 41,0^{\circ}$$

8. La figure précédente donne le faisceau utile à la limite du champ de pleine lumière image.

Ce faisceau de sommet PL' s'appuie sur le bord de la pupille de sortie L'₁. Le conjugué objet PL₁ de PL' à travers L₂ se trouve dans le plan focal image de L₁ et sur la droite O_2PL '.

Le faisceau utile à la limite du champ de pleine lumière intermédiaire a pour sommet PL_1 et pour base L_1 .

Le conjugué objet de PL_1 à travers L_1 est le point objet à l'infini dans la direction PL_1O_1 .

Le faisceau utile objet à la limite du champ de pleine lumière est donc le faisceau parallèle à cette direction, et qui s'appuie sur le bord de L_1 .

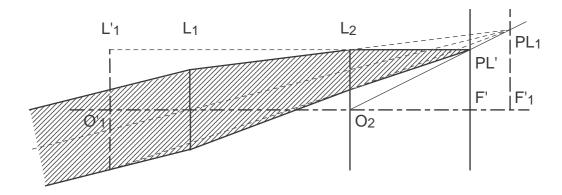


Figure 2

B/ L'OBJET RÉEL EST À 10 CM DE $\rm L_1$

1. La connaissance des points cardinaux du doublet permet d'obtenir directement la position de l'image.

TS1 -3 - 2004-2005

$$\overline{F'A'} = -\frac{f'^2}{\overline{FA}} = -\frac{f'^2}{\overline{FL_1} + \overline{L_1A}} = -\frac{6^2}{4 - 10} = + 6 cm$$

$$\overline{L_2A'} = \overline{L_2F'} + \overline{F'A'} = 3 + 6 = + 9 cm$$

2. De même pour le grandissement transversal :

$$g_y(A, A') = \frac{\overline{F'A'}}{-f'} = \frac{6}{-6} = -1$$

Les plans conjugués sont les plans antiprincipaux du doublet.

3. La Figure 1 reste valable, à condition de remplacer le plan [F'] par le plan [A'], et donc les 3 centimètres par 9. Le champ de pleine lumière image est inchangé : $\emptyset PL' = 3 \ cm$.

La similitude des triangles O'₁O₂L₂ et L₂PL'M' donne :

$$\begin{split} \frac{PL'M'}{O_2L_2} &= \frac{O_2A'}{O_1'O_2} = \frac{9}{6} = 1,5 \qquad PL'M' = \frac{O_2L_2}{2} = 1,5 \times 1,5 = 2,25 \ cm \\ &\rightarrow F'M' = F'PL' + PL'M' = 1,5 + 2,25 = 3,75 \ cm \qquad \varnothing M' = 7,5 \ cm \end{split}$$

4. Le champ de pleine lumière n'a pas changé, par contre le champ moyen a augmenté de façon importante (67%).

C/ MISE AU POINT PAR DÉPLACEMENT DE ${\rm L}_1$

1. Soit A_1 l'image intermédiaire de A. Initialement A_1 se trouvait en F'_1 , c'est-à-dire à 4 cm de L_2 . Le grandissement entre A_1 et A' est :

$$g_y(A_1, A') = \frac{\overline{L_2 A'}}{\overline{L_2 A_1}} = \frac{\overline{L_2 F'}}{\overline{L_2 F'_1}} = \frac{3}{4}$$

Le grandissement total étant égal au produit des grandissements successifs,

$$g_y(A, A_1) = \frac{g_y(A, A')}{g_y(A_1, A')} = \frac{-1}{3/4} = -\frac{4}{3}$$

Les relations de grandissement de Newton donnent :

$$g_y(A,A_1) = \frac{\overline{F_1'A_1}}{-f_1'} = \frac{f_1'}{\overline{F_1A}}$$
d'où,

$$\overline{F_1'A_1} = -f_1'.g_y(A, A_1) = 8 \frac{4}{3} = \frac{32}{3} = +10, \overline{6} \ cm$$

$$\overline{F_1A} = \frac{f_1'}{g_y(A, A_1)} = \frac{8}{-4/3} = -6 \ cm$$

$$\overline{L_1L_2} = \overline{L_1F_1'} + \overline{F_1'A_1} + \overline{A_1L_2} = 8 + 10, \overline{6} - 4 = 14, \overline{6} \ cm$$

 L_1 a donc été déplacé de $(14,\overline{6}-4)$, soit $10,\overline{6}$ cm, dans le sens négatif.

2.
$$\overline{AA'} = \overline{AF_1} + \overline{F_1L_1} + \overline{L_1L_2} + \overline{L_2A'} = 6 + 8 + 14, \overline{6} + 3 = +31, \overline{6}$$
 cm